

Observing System Simulations in Support of ASCENDS Mission Requirements Definition

S. R. Kawa*, D. F. Baker, A. E. Schuh, S. M. Crowell, P. J. Rayner, D. Hammerling, A. M. Michalak, Y. Shiga, J. Wang, J. Eluszkiewicz, L. Ott, T. S. Zaccheo, J. B. Abshire, E. V. Browell, B. Moore III, D. Crisp, and the ASCENDS Requirements Definition Team

- ASCENDS Overview
 - instrument simulation
- OSSEs
 - signal detection sensitivity
 - flux inversions
 - atmospheric state
- Summary

ASCENDS

"Mixing ratio (CO₂) needs to be measured to a <u>precision</u> of 0.5 percent of background (slightly <u>less than 2 ppm</u>) at 100-km horizontal length scale over land and at 200-km scale over open oceans."

Space-based Lidar for Atmospheric CO₂

Coverage and Errors

- Day/night all-latitude, land/ocean coverage
- Greatly reduced cloud/aerosol biases
- Potential for improved vertical resolution

Coverage and Errors

- Realistic ASCENDS random errors
- Scaled globally using observed clouds, aerosols, and reflectances

ASCENDS: N = 54423

Signal Detection Sensitivity

(o)

ΔCO₂ Significance

- readily detectable, likely attributable, with nominal ASCENDS precision.
 - fossil fuel emission shift detectable
 - Southern Ocean flux difference detectable with more averaging, higher precision

0.3

0

-0.3

µmol C/m²/s

Inversion of Ecosystem Sink

- Test ability to infer bias in ecosystem exchange of CO₂, i.e., example of possible 'missing sink' for atmospheric carbon.
- Annual inversion captures most of the large land sink features although somewhat noisier than "truth."
 - assumed ASCENDS random error: 1 ppmv (@ 2.0 μm)

Flux Inversion OSSEs

Instrument Inversion Tests

Fractional Error Reduction in CO₂ Flux Inversion for 1 Year

Avg Kernel Nominal error (ppmv)	2.06 μm	1.57 µm +10 pm	
0.5	0.49 0.51 0.17	0.47 0.49 0.13	Global Land Ocean
1.0	0.41 0.43 0.13	0.39 0.41 0.10	

- All considered instrument models produce large flux error reductions
- Inversions inform instrument trade-space decisions

Model Dependence

OU/UMelbourne Flux Inversion

- Spatially similar but quantitatively different error reductions given same inputs with different inversion methodology and transport
- Answer depends on model specifics
- Suite of models considered, including regional

Observing Systems Comparison

Flux Error Fractional Reduction

- ASCENDS provides large increase in error reduction compared to existing observations
 - -limited enhancement relative to expected OCO-2 with random errors only
- Further progress via reduced bias compared to passive sensors

Flux Shift Resulting from Bias

OCO-2 bias estimated from GOSAT

ASCENDS bias form

SZA bias

Signal bias

Cloud bias

Atmospheric State

RMS Model-Data Difference

- Dry air surface pressure is required to produce CO₂ column dry mole fraction.
- Surface pressure uncertainty is about
 1-2 mbar from met analyses.
- → Requirement to measure O₂?
- Plus, impact of T, H₂O profile uncertainties can be substantial.

Summary

- Observing system simulation experiments comprise a valuable framework
 - ASCENDS data will be capable of resolving several key hypotheses in carbon cycle science
 - Inverse models show significant flux uncertainty reduction, as well as relative performance scaling for varying instrument configurations
 - Using several models to establish robustness
- Large CO₂ flux improvement expected relative to current capability
 - Further benefit from expected lesser bias errors than OCO-2
- Requirement for co-aligned O₂ measurement debated
 - Atmospheric state uncertainty not negligible

Next Steps

- Producing ASCENDS mission white paper for community reference
 - Toward establishing L1 measurement requirements
 - Candidate for next decadal survey
 - Continuing assessments, e.g., bias error impacts

Acknowledgements

- M. Vaughan, NASA LaRC
- R. Menzies, G. Spiers, NASA JPL
- J. Mao, C. Weaver, H. Riris, Y. Liu, X. Sun, J. Collatz, NASA GSFC
- C. O'Dell, Colorado State U
- A. Chatterjee, NCAR
- G. Ehret, DLR
- P. Gupta, NASA ESTO
- K. Jucks, D. Wickland, S. Volz, NASA HQ